
Series of Functions

In general, we define a series of functions to be any expression of the form

∞∑
n=−∞

fn(x) = f1(x) + f2(x) + f3(x) + · · ·

in which fn(x), an expression which depends upon n and x, is the nth term of the series. To illustrate this,
consider two examples of series of functions,

∞∑
n=1

1

n

(
x+ 1

x

)
and

∞∑
n=1

sinnx

n
.

In the first case, fn(x) is given by 1
n

(
x+1
x

)
. In the second case, fn(x) is given by sinnx

n . Now, many common
types of series of functions exist. These are classified according to the form of fn. In particular, there are
power series,

∞∑
n=−∞

an(z − a)n ,

in which fn is a power of z or, in greater generality, of (z−a), and in either case z ∈ C. Dirichlet series have
fn(z) = an/n

z, z ∈ C, and are summed over positive values of the index,

∞∑
n=1

an
nz

.

Trigonometric series are series of functions of the form an cosnx+ bn sinnx where, typically, x ∈ R,
∞∑

n=0

an cosnx+ bn sinnx .

Specific kinds of each of these general types of series of functions are obtained when the coefficients are
selected according to a specific formula and somehow correspond to a particular given function f(x), or f(z)
in the case z ∈ C. For example, the Riemann zeta function is a special case of Dirichlet series where the
coefficients are all 1,

ζ(z) =

∞∑
n=1

1

nz
.

Fourier series are trigonometric series with

an =
1

π

∫ π

−π

f(x) cosnx dx and bn =
1

π

∫ π

−π

f(x) sinnx dx .

Now, in the case of power series, three kinds of power series are identified, these are Laurent series

∞∑
n=−∞

an(z − a)n with an =
1

2πi

∮
γ

f(z)

(z − c)n+1
dz ,

Taylor series, which is a special case of Laurent series where the variable z is specialized to the real line and
is denoted x to emphasize this, the centre a is real, and the sum is over non-negative values of the index,

∞∑
n=0

an(x− a)n with an =
f (n)(a)

n!
,

and Maclaurin series, the special case of Taylor series centred at 0, i.e., with a = 0,

∞∑
n=0

anx
n with an =

f (n)(0)

n!
.

Of course, other series are possible. However, this document focuses primarily upon Taylor series and the
special case expanded about the origin, Maclaurin series.
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Digression on Symmetry

Graphs of functions might exhibit symmetry. Two kinds of symmetry will be important in the development
which follows. Study the plots of powers of x in figures 1 and 2 below. What kind of symmetry do you
observe? How might you characterize the symmetry in a succinct mathematical expression? What other
familiar functions exhibit the same kinds of symmetry?

Reflective symmetry through the origin — Odd Symmetry
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Figure 1: Plot of odd powers of x.

In figure 1, we notice that all of the odd powers of x shown have reflective symmetry through a point, in this
case, through the origin. It should be evident that every odd power exhibits this kind of symmetry. Other
functions exhibit this kind of symmetry, and when they do, they are said to be “odd functions” because their
symmetry is analogous to that of the odd powers of x. We may characterize this symmetry algebraically by
stating that f(x) is odd if and only if f(−x) = −f(x) for all x ∈ Df . Why does this make sense? If we
locate points on the x-axis symmetrically about the origin, we will notice that the magnitudes of the values
of f at these symmetrically disposed points are the same but their signs are opposite.

Reflective symmetry through the y-axis — Even Symmetry
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Figure 2: Plot of even powers of x.
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Figure 2 displays some even powers of x, and they are seen to have reflective symmetry through an axis, in
this case, through the y-axis. It should be evident that every even power exhibits this kind of symmetry.
Furthermore, many other functions exhibit symmetry through the y-axis, and when they do, they are said
to be “even functions” because their symmetry is the same reflective symmetry through the y-axis as the
even powers of x. The algebraic characterization of this type of symmetry states that f(x) is even if and
only if f(−x) = f(x) for all x ∈ Df . You must ask yourself why this makes sense. If we locate points on the
x-axis symmetrically about the origin, we will notice that the magnitudes of the values of f are the same
and their signs are the same as well.

Sine and Cosine

Sine is an odd function, mathematically, sin(−θ) = − sin θ for all θ ∈ R. Cosine is an even function,
mathematically, cos(−θ) = cos θ for all θ ∈ R. A quick plot of the graphs of sine and cosine should confirm
these claims of symmetry. However, these facts shall subsequently become evident from the discussion of
properties of even and odd functions together with our explorations of the Maclaurin series representations
of them. Specifically, we will see that the Maclaurin series representation of cosine contains only even powers
of x and the Maclaurin series for sine contains only odd powers of x.

Properties of even and odd functions

There are algebraic properties and analytical properties (those having to do with limits, derivatives, and
integrals) of even and odd functions which are worth noting. Sums (and differences) of even functions are
even, sums (and differences) of odd functions are odd, sums (and differences) with one summand even and
one summand odd are neither even nor odd in general. The zero function (the constant function which
obtains value 0 for all x ∈ R) is both even and odd, in fact, it is the only real function of real variables
which is both even and odd. Derivatives of even functions are odd, derivatives of odd functions are even.
Integrals are more interesting because, while anti-derivatives of odd functions are even, anti-derivatives of
even functions are only odd when the constant of integration vanishes. Definite integrals have some nice
simplifications however, integrals of odd functions over symmetric intervals about the origin vanish whereas
integrals of even functions over symmetric intervals about the origin have a value which is double the integral
on either one of the half intervals. We now prove these claims.

Theorem 1 (algebraic properties). Sums of even functions are even, sums of odd functions are odd, sums
of functions where one is even and one is odd are neither even nor odd in general, the zero function is both
even and odd.

Proof. Suppose f and g are even. Consider the function f + g. In order to show that f + g is even, we must
show that (f + g)(−x) = (f + g)(x) for each x in the domain of f + g. That is, we must show that the
algebraic characterization holds. We have

(f + g)(−x) = f(−x) + g(−x) (by definition of sums of functions)

= f(x) + g(x) (because f and g are even)

= (f + g)(x) (by definition of sums of functions)

Hence, because x was an arbitrarily selected point in the domain, the requirement holds and f + g is even
whenever both summands are even. Now we quickly present arguments for the remaining claims. For f and
g both odd,

(f + g)(−x) = f(−x) + g(−x) (by definition)

= −f(x)− g(x) (f and g are odd)

= −(f + g)(x) (by definition)

Thus, the sum of odd functions is odd. Now, suppose f(x) = x and g(x) = 1, then f is odd and g is
even, however, the sum (f + g)(x) = x + 1 exhibits neither even nor odd symmetry. This counterexample
demonstrates that the sum of even and odd functions does not necessarily possess even or odd symmetry.
Finally, if a function f is both even and odd, it must satisfy both f(−x) = f(x) and f(−x) = −f(x), hence,
equating these, f(x) = −f(x) or 2f(x) = 0, hence f(x) = 0 for all x ∈ R as required.

Some further algebraic properties involving multiplication (and division) and composition follow, but
these are not necessarily employed in the discussion on series.
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Theorem 2 (further algebraic properties). Products (and quotients) of even functions are even, products
(and quotients) of odd functions are even, the product (or quotient) of an even function with and odd function
is odd. Compositions of any function with an even function is even, an even function composed with an even
or odd function is even, the composition of two odd functions is odd.

Proof. In the case of products of two even functions, suppose f and g are both even and consider (fg)(−x).

(fg) (−x) = f(−x)g(−x) = f(x)g(x) = (fg) (x) .

thus, the product of two even functions is even, and the case for quotients follows similarly. Now suppose
that f and g are both odd.

(fg) (−x) = f(−x)g(−x) = (−f(x)) (−g(x)) = f(x)g(x) = (fg) (x) ,

hence, the product of two odd functions is also even. Finally, suppose f is even and g is odd, then

(fg) (−x) = f(−x)g(−x) = f(x) (−g(x)) = −f(x)g(x) = − (fg) (x) ,

and the product (and similarly the quotient) of an even function with an odd function is odd. Now we prove
the claims about compositions, in all cases, suppose the composition f ◦ g is defined. Firstly, suppose f is
even and g is any function whatsoever and consider (g ◦ f)(−x).

(g ◦ f) (−x) = g (f(−x)) = g (f(x)) = (g ◦ f) (x).

Thus, the composition of any function with an even function is even. Now, we demonstrate that the
composition of an even function with an odd function is even. Suppose f is even but g is odd.

(f ◦ g) (−x) = f (g(−x)) = f (−g(x)) = f (g(x)) = (f ◦ g) (x) ,

as required. Finally, to show that the composition of two odd functions is odd, suppose f and g are both
odd.

(f ◦ g) (−x) = f (g(−x)) = f (−g(x)) = −f (g(x)) = − (f ◦ g) (x) ,

hence, the composition of two odd functions is odd as claimed.

Theorem 3 (analytical properties). Derivatives of even functions are odd, derivatives of odd functions are
even. For definite integrals, for f even and g odd, we have∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx and

∫ a

−a

g(x) dx = 0 .

Proof. Suppose f is even and g is odd. Consider d
dxf(−x).

d

dx
f(−x) = − d

dx
f(−x)

by chain rule, but, because f is even,
d

dx
f(−x) =

d

dx
f(x),

and we equate to obtain
d

dx
f(x) = − d

dx
f(−x).

Hence, the derivative is odd when the original function is even. Now, consider the derivative of g.

d

dx
g(x) = − d

dx
g(−x) (by symmetry of g)

= −− d

dx
g(−x) (by chain rule)

=
d

dx
g(−x)
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as required, hence the derivative of g is even whenever g is odd. Now, for definite integrals,∫ a

−a

f(x) dx =

∫ 0

−a

f(x) dx+

∫ a

0

f(x) dx (by additivity)

= −
∫ 0

a

f(−u) du+

∫ a

0

f(x) dx (by substitution x = −u in first integral)

=

∫ a

0

f(−u) du+

∫ a

0

f(x) dx (swapping limits in the first integral)

=

∫ a

0

f(u) du+

∫ a

0

f(x) dx (f(−u) = f(u) because f is even)

= 2

∫ a

0

f(x) dx

becuase the integrals are identical, i.e., the variable of integration is a bound variable and its name doesn’t
influence the computation. For odd integrands g, we have∫ a

−a

g(x) dx =

∫ 0

−a

g(x) dx+

∫ a

0

g(x) dx (by additivity)

= −
∫ 0

a

g(−u) du+

∫ a

0

g(x) dx (by substitution x = −u in first integral)

=

∫ a

0

g(−u) du+

∫ a

0

g(x) dx (swapping limits in the first integral)

= −
∫ a

0

g(u) du+

∫ a

0

g(x) dx (g(−u) = −g(u) because g is odd)

= 0

again because the integrals are identical, but this time they are of opposite sign.

Maclaurin Series

Maclaurin series are a special cases of Taylor series where the expansions are centred at zero. In this section,
we develop Maclaurin series of several important elementary functions and manipulate these series to obtain
other important series. In fact, in many cases, Maclaurin series may be employed to obtain Taylor series via
an appropriate substitution of (x− a).

Maclaurin series are series of functions, in particular, power series corresponding to a given function f ,
of the form

f(x) =

∞∑
n=0

f (n)(0)

n!
xn .

So, to find a Maclaurin series expansion for a particular function f , we may simply compute the derivatives
of f , evaluate them at zero, and substitute into this formula. This approach always works whenever a
function indeed possesses a power series representation, and it is employed now to find some important
series; however, once these series are known, it is possible to employ the known series to find other series
without having to go through this tedious process.

Firstly, consider the exponential function.

f(x) = ex −→ f(0) = e0 = 0

f (1)(x) = ex −→ f (1)(0) = e0 = 0

f (2)(x) = ex −→ f (2)(0) = e0 = 0

f (3)(x) = ex −→ f (3)(0) = e0 = 0

...
...

f (n)(x) = ex −→ f (n)(0) = e0 = 0 .

Upon substitution into the expression for the Maclaurin series, we obtain

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · =

∞∑
n=0

1

n!
xn .
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Now, consider sine.

f(x) = sinx −→ f(0) = sin 0 = 0

f (1)(x) = cosx −→ f (1)(0) = cos 0 = 1

f (2)(x) = − sinx −→ f (2)(0) = − sin 0 = 0

f (3)(x) = − cosx −→ f (3)(0) = − cos 0 = −1

f (4)(x) = sinx −→ f (4)(0) = sin 0 = 0

...

Observing the cyclic pattern of values 0, 1, 0, -1, 0, etc. and substituting into the expression for the Maclaurin
series, we obtain

sinx = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 +

1

9!
x9 + · · · =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 .

Now, for cosine, instead of repeating this process, we know that the derivative of sine is cosine, hence, we
differentiate the series1 for sine to obtain the following

cosx = 1− 1

3!
3x2 +

1

5!
5x4 − 1

7!
7x6 +

1

9!
9x8 + · · · =

∞∑
n=0

(−1)n

(2n+ 1)!
(2n+ 1)x2n

and, after cancelling within the factorials (observe that n! = n× (n− 1)! and (2n+ 1)! = (2n+ 1)× (2n)!),
we obtain

cosx = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8 + · · · =

∞∑
n=0

(−1)n

(2n)!
x2n .

Two important series remain to be discussed, and one is a special case of the other, binomial and geometric.
I will simply state the expression for the binomial series and use it to derive the expression for the geometric
series. As an exercise, try to derive this expression in the manner demonstrated for ex and sine; this is a
useful exercise. The binomial series is

(1 + x)k =
∞∑

n=0

(
k

n

)
xn

where (
k

n

)
=

{
1 when n = 0
k(k−1)(k−2)···(k−n+1)

n! when n > 0

read “k choose n”. As an example of the usage of this strange expression, consider −1/2 choose 5.(
−1/2

5

)
=

(−1/2)(−3/2)(−5/2)(−7/2)(−9/2)

5!
= − (1/2)(3/2)(5/2)(7/2)(9/2)

5 · 4 · 3 · 2 · 1
= −7 · 9

28
.

The number of factors in the numerator is n, we begin with the value k and successively subtract 1 until
the nth factor is obtained. The denominator simply contains n!, pronounced n factorial and equal to
n! = n(n− 1)! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1. Now, we show that the geometric series is a special case of
binomial.

1

1− x
= (1− (−x))−1 =

∞∑
n=0

(
−1

n

)
(−x)n =

∞∑
n=0

(
−1

n

)
(−1)nxn

1And in engineeringland we simply accept that this proposed termwise integration or differentiation is possible, especially
in first year when rigorous thought and critical reasoning are beyond our intellectual capacity. Actually, this is dissmissive and
inaccurate, it is well within our capacity. The truth is that we don’t give a fuck, and this is unfortunate because not giving a
fuck can lead to serious squandering of finite resources, financial loss, lawsuits, and revoking of engineering license when our shit
fails because we based it upon unproven assumptions. The reality is that differentiation and integration of series of functions
entail an interchange of two limiting processes, and this is not always possible. Consider lim

n→∞
x→∞

x
x+n

, in which the order of taking

limits matters (and hence this stacked limit symbol is not well defined) if we allow x to go to infinity firstly, then the limit is
1, however, if we allow n to go to infinity firstly, the limit is 0. Having said all of this, it turns out that power series possess
some nice properties which allow us to differentiate and integrate termwise without worry. For those of you who give a fuck and
want to know why, you will be successful in your careers and have mad C.R.E.A.M., please see Walter Rudin’s Principles of
Mathematical Analysis 3rd edition. For those of you who don’t give a fuck, don’t worry, just integrate and differentiate series
of functions termwise, this is suitable for toy problems of little consequence.
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now, we need to simplify
(−1

n

)
,(

−1

n

)
(−1)n = (−1)n

(−1)(−2) · · · (−1− n+ 1)

n!
= (−1)n

(−1)(−2) · · · (−n)

n!
=

(1)(2) · · · (n)
n!

=
n!

n!
= 1 ,

where, in the third equality from the end, (−1) was pulled from each of the n factors in the numerator, note
that (−1)n(−1)n = 1. Then, upon substitution of this into the series, it simplifies to

∞∑
n=0

xn

as expected.

Summary

This document is degenerate in several respects. Examples of Taylor series with centres different from zero
have not been discussed. The entire treatment of convergence has been avoided, but the problem set which
follows ask questions of convergence. In short, if you don’t know how to manipulate radii of convergence of
power series, apply the ratio test, if you know how to manipulate the radii, as in integration and differentiation
of series do not modify the radii of convergences, composition of series, addition, subtraction, multiplication,
and division do modify the radii accordingly, then using known series and their radii is best. The five series
which must be memorized are listed here together with their radii of convergence. Finally, this document
has not provided a treatment of Taylor’s inequality for determining error associated with Taylor polynomials
to approximate series. I will try to update this document soon with further discussion of the above topics
and full solutions to the practice problems below.

ex =
∞∑

n=0

xn

n!
; R = ∞

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1; R = ∞

cosx =

∞∑
n=0

(−1)n

(2n!
x2n; R = ∞

(1 + x)k =
∞∑

n=0

(
k

n

)
xn; R = 1

1

1− x
=

∞∑
n=0

xn; R = 1
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Practice Problems

1. Show the following, and identify the open inter-
vals of convergence where the equalities hold.

(a)

ex =
∞∑

n=0

xn

n!

(b)

ln(1− x) = −
∞∑

n=1

xn

n

(c)

ln(1 + x) =

∞∑
n=1

(−1)n

n
xn

(d)

1

1− x
=

∞∑
n=0

xn

(e)

x

x− 1
=

∞∑
n=0

x−n

(f)

xm

1− x
=

∞∑
n=m

xn

(g)

1

(1− x)2
=

∞∑
n=1

nxn−1

(h)

sinh(x) =
∞∑

n=0

x2n+1

(2n+ 1)!

(i)

cosh(x) =

∞∑
n=0

x2n

(2n)!

(j)

ln(cos(x)) = −x2

2
− x4

12
− x6

45
+ · · ·

(k)

ex

cos(x)
= 1 + x+ x2 +

2

3
x3 +

1

2
x4 + · · ·

(l)

(1 + x)ex =

∞∑
n=1

n+ 1

n!
xn

2. Find the Taylor series of the given function f
about the given centre a. State the radius of
convergence.

(a)

f(x) =
1

3x+ 2
; a = 0

(b)

f(x) =
1

4 + x2
; a = 0

(c)

f(x) =
1

x+ 3
; a = 2

(d)
f(x) = cos(x2); a = 0

(e)

f(x) =
1√
1 + x

; a = 0

(f)
f(x) = e5x; a = 0

(g)
f(x) = ln(1 + 2x); a = 0

(h)
f(x) = (1 + 3x)3/2; a = 0

(i)
f(x) = x4 + 3x2 − 2x+ 1; a = 0

(j)
f(x) = x4 + 3x2 − 2x+ 1; a = 1

(k)

f(x) =
1

(x+ 2)3
; a = 0

(l)

f(x) =
1

x2 + 8x+ 15
; a = 0

(m)
f(x) = xx; a = 3

(n)
f(x) = arctan(x); a = 0

(o)
f(x) =

√
x+ 3; a = 0

(p)

f(x) =
x2

(1 + x2)2
; a = 0

(q)
f(x) = x(1− x)1/3; a = 0

(r)

f(x) =
1

3x+ 2
; a = 0

(s)
f(x) = arcsin(x2); a = 0

(t)

f(x) = ln
1 + x/

√
2

1− x/
√
2
; a = 0
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(u)

f(x) = sincx =
sinx

x
; a = 0

(v) the error function

erf(x) =
2√
π

∫ x

0

e−t2 dt; a = 0

(w) the Fresne cosinel integral

C(x) =

∫ x

0

cos

(
πt2

2

)
dt; a = 0

(x) the Fresnel sine integral

S(x) =

∫ x

0

sin

(
πt2

2

)
dt; a = 0

3. Find the function to which the given series con-
verges, and state the radius of convergence.

(a)
∞∑

n=1

nxn−1

(b)
∞∑

n=2

n(n− 1)xn−2

(c)
∞∑

n=1

(n+ 1)xn−1

(d)
∞∑

n=1

n2xn−1

(e)
∞∑

n=1

(n2 + 2n)xn

(f)
∞∑

n=0

1

n+ 1
xn

(g)
∞∑

n=0

(−1)n

2n+ 1
x2n+1

(h)
∞∑

n=1

(−1)n

n
x2n

(i)
∞∑

n=2

n3nx2n

(j)
∞∑

n=0

n+ 1

n+ 2
xn

4. Show that the given series converges to the
given value.

(a)
∞∑

n=0

2n

n!
= e2

(b)
∞∑

n=0

(−1)n

(2n+ 1)!
= sin 1

(c)
∞∑

n=0

(−1)n9n

(2n)!
= cos 3

(d)
∞∑

n=1

(−1)n

n!
=

1

e
− 1

(e)
∞∑

n=1

(−1)n

32n(2n+ 1)!
= 3 sin

1

3
− 1

(f)
∞∑

n=1

2n

n3n
= ln 3

(g)
∞∑

n=1

1

n2n
= ln 2

(h)
∞∑

n=1

(−1)n

22n
= −1

5

(i)
∞∑

n=1

n

2n
= 2

(j)
∞∑

n=1

(−1)n

2n+ 1
=

π

4

(k)
∞∑

n=1

n(−1)n

32n
= − 9

100

5. Approximate to three decimal places. In all
cases, the resulting anti-derivative is alternat-
ing, and, consequently, the alternating series er-
ror bound may be employed. There are many
cases where the resulting series is not alternat-
ing and Taylor’s inequality must be employed
together with the integral form of the triangle
inequality. These cases are not covered in these
exercises, but must be learned.
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(a) ∫ 1

0

sincx dx =

∫ 1

0

sinx

x
dx

(b) ∫ 1/2

0

cosx2 dx

(c) ∫ 2/3

0

1

x4 + 1
dx

(d) ∫ 1/2

0

1

1 + x3
dx

(e) ∫ 0.3

0

e−x2

dx

6. Evaluate the following limits using series

(a)

lim
x→0

tanx

x

(b)

lim
x→0

1− cosx

x2

(c)

lim
x→0

(1− cosx)2

3x4

(d)

lim
x→0

√
1 + x− 1

x

(e)

lim
x→∞

x sin
1

x

(f)

lim
x→0

(
ex + e−x

ex − e−x
− 1

x

)
7. Employ series to solve the following differential

equations.

(a)
y′ + 3y = 4

(b)
y′′ + y′ = 0

(c)
xy′ − 4y = 3x

(d)
4xy′′ + 2y′ + y = 0

(e)
y′′ + y = 0

(f)
xy′′ + y = 0

10



Solutions

It took me about three hours and a large coffee to generate this solution set (which I will grant is partially,
albeit deliberately, incomplete, and, furthermore, took about ten hours to typeset). My recommendation
is that you become this quick with an error rate of zero. In engineering, you want the mathematics to be
second nature because the interesting stuff is the physics and the application of mathematics to solve real
engineering problems. You don’t want to always be looking things up online, in a book, or in some external
source, you want these techniques to be in the fore of your mind so you can solve real problems easily and
effectively.

1. (a) We have already demonstrated that ex =
∑∞

n=0
xn

n! . The point of the question is to ensure that
you know how to obtain this result. If you have any doubt, reread the derivation. Now, for the
interval of convergence, apply the ratio test. In other words, we must find values of x for which

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 .

The nth term is xn/n!, hence, we consider

lim
n→∞

∣∣∣∣∣∣
xn+1

(n+1)!
xn

n!

∣∣∣∣∣∣ .
Begin by collapsing the absolute value to only apply to the part which has a potential to be
negative via the rules |xy| = |x| |y|, |x/y| = |x|/|y|, | − x| = |x|, and, the triangle inequality
|x+ y| ≤ |x|+ |y| (not needed here). Thus,

lim
n→∞

∣∣∣∣∣∣
xn+1

(n+1)!
xn

n!

∣∣∣∣∣∣ = lim
n→∞

|x|n+1

(n+1)!

|x|n
n!

= lim
n→∞

|x|n+1

|x|n
n!

(n+ 1)!

upon grouping similar expressions together. Then, cancelling, we obtain

lim
n→∞

|x|n!
(n+ 1)n!

= |x| lim
n→∞

1

(n+ 1)

and this converges to 0 for all x ∈ R and 0 < 1, hence, the given series converges absolutely for
all x ∈ R (i.e., the interval of convergence is R or (∞,∞)) and the radius is R = ∞ because the
radius is half of the width of the interval of convergence.

(b) The question one must ask oneself is “what does ln(1 − x) look like?” So, amongst the five
memorized expressions, the derivative of ln(1 − x) looks awefully similar to a geometric series.
Thus, we have

d

dx
ln(1− x) =

−1

1− x
= −

∞∑
n=0

xn .

However, and this is really important, this is the series representation of the derivative of the
desired function, we must effectively solve the separable differential equation

d

dx
ln(1− x) = −

∞∑
n=0

xn .

We integrate both sides, and termwise integration on the right yields

ln(1− x) = −
∞∑

n=0

xn+1

n+ 1
+ C .

Upon substitution of x = 0, it is evident that C must vanish, hence

ln(1− x) = −
∞∑

n=0

xn+1

n+ 1
.
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Now, we may change the variable of summation; increase the starting index by 1 and decrease
the index within the general term to compensate for the shift, hence

ln(1− x) = −
∞∑

n=1

xn

n
.

To obtain the radius of convergence, we could apply the ratio test as in part (a), but it is more
expedient to observe that geometric series converges when |x| < 1, i.e., R = 1, and that integration
does not alter the radius, hence, the radius of the resulting series is R = 1. Thus, the interval of
convergence is (−1, 1).

(c) This series is easily obtained from 1 (b) upon substitution of −x for x. The radius remains R = 1
because the composition with −x simply reflects the interval of convergence but does not scale it.
Hence, the open interval of convergence is (−1, 1).

(d)
∑

xn is geometric, hence |xn+1|/|xn| = |x|, the common ratio, and we know that, for the conver-
gence of infinite geometric series, the common ratio must satisfy |x| < 1. Hence, R = 1 and the
open interval of convergence is (−1, 1).

(e)

x

x− 1
=

1

1− frac1x
=

∞∑
n=0

(
1

x

)n

=
∞∑

n=0

x−n

this is a substitution within a geometric series as well.
∣∣ 1
x

∣∣ < 1 or 1 < |x|. This seems to be a
pathalogical example because the interval of convergence appears to be outside of the unit disc
centred at the origin. I will allow you to think about it.

(f)

xm

1− x
= xm 1

1− x
= xm

∞∑
n=0

xn =

∞∑
n=0

xn+m .

Upon change of variable in the index of summation, by starting the series at initial index m, we
compensate for the shift by reducing all of the instances of the index within the general term by
m and obtain

xm

1− x
=

∞∑
n=m

xn .

(g) Think about derivatives of geometric series.

(h)

sinhx =
ex − e−x

2
=

∑∞
n=0

xn

n! −
∑∞

n=0
(−1)nxn

n!

2
=

∞∑
n=0

1− (−1)n

2

xn

n!

but

1− (−1)n =

{
0 when n even

2 when n odd

hence

sinhx =

∞∑
=0
n odd

xn

n!
.

If we apply a change of variable in the index of summation, that is, if we allow n = 2k + 1 for
k = 0, 1, 2, . . ., which is odd for all such k, we may write this equivalently as

sinhx =
∞∑
k=0

x2k+1

(2k + 1)!
.

The radius is R = ∞ because each of the series which are combined have infinite radius.

Now, an alternative solution, which I belive is superior, relies on the fact that

i sinhx = sin ix
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Thus, we substitute ix into the series representation of sine and divide by i to obtain

sinhx =
1

i
sin ix =

1

i

∞∑
n=0

(−1)n
(ix)2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n
(i)2nx2n+1

(2n+ 1)!
=

∞∑
n=0

x2n+1

(2n+ 1)!

as expected.

(i)

coshx = cos ix

Thus,

coshx = cos ix =
∞∑

n=0

(−1)n
(ix)2n

(2n)!
=

∞∑
n=0

(−1)n
(i)2nx2n

(2n)!
=

∞∑
n=0

x2n

(2n)!

(j) Carry out the composition with care...

(k) Carry out the composition with care...

(l)

(1 + x)ex = (1 + x)
∞∑

n=0

xn

n!
=

∞∑
n=0

xn

n!
+ x

∞∑
n=0

xn

n!
=

∞∑
n=0

xn

n!
+

∞∑
n=0

xn+1

n!

=
∞∑

n=0

xn

n!
+

∞∑
n=1

xn

(n− 1)!
= 1 +

∞∑
n=1

xn

n!
+

∞∑
n=1

xn

(n− 1)!

= 1 +

∞∑
n=1

(
1

n(n− 1)!
+

1

(n− 1)!

)
xn = 1 +

∞∑
n=1

(
1 + n

n(n− 1)!

)
xn

= 1 +
∞∑

n=1

(
1 + n

n!

)
xn =

∞∑
n=0

n+ 1

n!
xn .

2. (a)

1

3x+ 2
=

1

2
(
1−

(−3x
2

)) =
1

2

∞∑
n=0

(
−3x

2

)n

=
∞∑

n=0

(−1)n3n

2n+1
xn

For convergence, we must have
∣∣−3x

2

∣∣ < 1 or |x| < 2
3 , thus R = 2

3 .

(b)

1

4 + x2
=

1

4
(
1−

(
−
(
x
2

)2)) =
1

4

∞∑
n=0

(
−
(x
2

)2)n

=
∞∑

n=0

(−1)nx2n

4n+1

For convergence, we must have
∣∣∣− (x2 )2∣∣∣ < 1 or |x| < 2, thus R = 2.

(c)

1

x+ 3
=

1

x− 2 + 5
=

1

5
(
1−

(
− (x−2)

5

)) =
1

5

∞∑
n=0

(
− (x− 2)

5

)n

=

∞∑
n=0

(−1)n(x− 2)n

5n+1

For convergence,
∣∣∣− (x−2)

5

∣∣∣ < 1 or |x− 2| < 5, thus R = 5.

(d)

cos(x2) =
∞∑

n=0

(−1)n

(2n)!
(x2)2n =

∞∑
n=0

(−1)n

(2n)!
x4n ; R = ∞

(e)

1√
1 + x

= (1 + x)−1/2 =
∞∑

n=0

(
−1/2

n

)
xn

13



but (
−1/2

n

)
=

(−1/2)(−3/2) · · · (−1/2− n+ 1)

n!
=

(−1/2)(−3/2) · · · (−n+ 1/2)

n!

= (−1)n
(1/2)(3/2) · · · (n− 1/2)

n!
= (−1)n

(1 · 3 · 5 · · · (2n− 1)

2nn!

= (−1)n
(2n)!

2n n! 2n n!
= (−1)n

(2n)!

22n(n!)2

Thus,

1√
1 + x

=
∞∑

n=0

(−1)n
(2n)!

22n(n!)2
xn ; R = 1

(f)

e5x =
∞∑

n=0

(5x)n

n!
=

∞∑
n=0

5n

n!
xn ; R = ∞

(g) . . .

(h) . . .

(i) x4 + 3x2 − 2x+ 1 is already a Maclaurin series with R = ∞
(j) There are two approaches to this problem. We may employ the definition of Taylor series, take

derivatives, evaluate them at x = 1, and substitute into the formula. The second approach involves
algebraic transformation of the polynomial to be expanded in powers of (x− 1) instead of powers
of x. We begin with the first approach.

f(x) = x4 + 3x2 − 2x+ 1 −→ f(1) = 3

f (1)(x) = 4x3 + 6x− 2 −→ f (1)(1) = 8

f (2)(x) = 12x2 + 6 −→ f (2)(1) = 18

f (3)(x) = 24x −→ f (3)(1) = 24

f (4)(x) = 24 −→ f (4)(1) = 24

and all subsequent derivatives vanish, hence

x4 + 3x2 − 2x+ 1 = 3 + 8(x− 1) +
18

2
(x− 1)2 +

24

3!
(x− 1)3 +

24

4!
(x− 1)4

= 3 + 8(x− 1) + 9(x− 1)2 + 4(x− 1)3 + (x− 1)4

and it obviously converges everywhere. Now, the second approach is algebraic. We seek an
expansion in terms of (x − 1) because the result must be a Taylor series about the given centre
x = 1. Thus, we begin by rewriting (x − 1)4 in terms of x4 and lower powers, substituting the
result into the polynomial, and repeating for (x− 1)3, etc.. Now,

(x− 1)4 = x4 − 4x3 + 6x2 − 4x+ 1 or x4 = (x− 1)4 + 4x3 − 6x2 + 4x− 1

substituting, we obtain

f(x) = [(x− 1)4 + 4x3 − 6x2 + 4x− 1] + 3x2 − 2x+ 1 = (x− 1)4 + 4x3 − 3x2 + 2x

Now,
(x− 1)3 = x3 − 3x2 + 3x− 1 or x3 = (x− 1)3 + 3x2 − 3x+ 1

substituting, we obtain

f(x) = (x− 1)4 + 4[(x− 1)3 + 3x2 − 3x+ 1]− 3x2 + 2x = (x− 1)4 + 4(x− 1)3 + 9x2 − 10x+ 4

Now,
(x− 1)2 = x2 − 2x+ 1 or x2 = (x− 1)2 + 2x− 1

substituting, we obtain

f(x) = (x−1)4+4(x−1)3+9[(x−1)2+2x−1]−10x+4 = (x−1)4+4(x−1)3+9(x−1)2+8x−5
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Finally,
(x− 1) = x− 1 or x = (x− 1) + 1

substituting, we obtain

f(x) = (x−1)4+4(x−1)3+9(x−1)2+8[(x−1)+1]−5 = (x−1)4+4(x−1)3+9(x−1)2+8(x−1)+3

as expected.

(k)

1

(x+ 3)3
=

1

27

1(
1 + x

3

)3 =
1

27

(
1 +

x

3

)−3

=
1

27

∞∑
n=0

(
−3

n

)(x
3

)n
=

∞∑
n=0

(
−3

n

)
xn

3n+3

now, (
−3

n

)
=

(−3)(−4)(−5) · · · (−3− n+ 1)

n!
=

(−3)(−4)(−5) · · · (−n− 2)

n!

= (−1)n
3 · 4 · 5 · · · (n+ 2)

n!
= (−1)n

2 · 3 · 4 · 5 · · · (n+ 2)

2n!

= (−1)n
n!(n+ 1)(n+ 2)

2n!
=

(−1)n(n+ 1)(n+ 2)

2

hence,

1

(x+ 3)3
=

∞∑
n=0

(−1)n(n+ 1)(n+ 2)

2 · 3n+3
xn

An alternative solution begins with

1

x+ 3
=

1

3
(
1−

(
−x

3

)) =
1

3

∞∑
n=0

(
−x

3

)n
=

∞∑
n=0

(−1)n
1

3n+1
xn

and differentiating twice,

1

x+ 3
=

∞∑
n=0

(−1)n
1

3n+1
xn

− 1

(x+ 3)2
=

∞∑
n=0

(−1)n
n

3n+1
xn−1

2

(x+ 3)3
=

∞∑
n=0

(−1)n
n(n− 1)

3n+1
xn−2 =

∞∑
n=2

(−1)n
n(n− 1)

3n+1
xn−2

so, by a shift of index,

1

(x+ 3)3
=

∞∑
n=0

(−1)n
(n+ 2)(n+ 1)

2 · 3n+3
xn

as expected.

(l) . . .

(m) . . .

(n)

d

dx
arctanx =

1

1 + x1
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n

integrating, we obtain

arctanx =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
+ C

and, upon substitution of x = 0, C must vanish, hence

arctanx =
∞∑

n=0

(−1)n
x2n+1

2n+ 1
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3. (a) The series looks like the derivative of the geometric series. Differentiate both sides of

(1− x)−1 =
1

1− x
=

∞∑
n=0

xn

to obtain

(1− x)−2 =
1

(1− x)2
=

∞∑
n=0

nxn−1

and observe that, when the index n = 0, the contribution to the series is 0, hence, we may begin
the series at n = 1 with no loss of information. Thus,

1

(1− x)2
=

∞∑
n=1

nxn−1 .

R = 1 because differentiation does not alter the radius of convergence.

(b)

1

1− x
=

∞∑
n=0

xn

1

(1− x)2
=

∞∑
n=0

nxn−1 =

∞∑
n=1

nxn−1

2

(1− x)3
=

∞∑
n=1

n(n− 1)xn−2 =
∞∑

n=2

n(n− 1)xn−2

and we see that
∑∞

n=2 n(n− 1)xn−2 converges to 2
(1−x)3 on the interval (−1, 1), thus R = 1.

(c)

∞∑
n=1

(n+ 1)xn−1 =

∞∑
n=1

nxn−1 +

∞∑
n=1

xn−1

=
∞∑

n=1

nxn−1 +

∞∑
n=0

xn

where the first term is the derivative of the geometric series and the second term is the geometric
series. Thus

∞∑
n=1

(n+ 1)xn−1 =
1

(1− x)2
+

1

1− x
=

1

(1− x)2
+

1− x

(1− x)2
=

2− x

(1− x)2

and, again, R = 1.

(d) Differentiating the geometric series and multiplying by x, obtain

1

1− x
=

∞∑
n=0

xn

1

(1− x)2
=

∞∑
n=0

nxn−1 =

∞∑
n=1

nxn−1

x

(1− x)2
=

∞∑
n=0

nxn

now, differentiating a second time, we obtain

(1− x)2 + 2x(1− x)

(1− x)4
=

∞∑
n=1

n2xn−1

1− x2

(1− x)4
=

∞∑
n=1

n2xn−1

1− x2

(1− x)4
=

∞∑
n=1

n2xn−1

with R = 1.
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(e)
∞∑

n=1

(
n2 + 2n

)
xn =

∞∑
n=1

n2xn +
∞∑

n=1

2nxn .

From part (d), we have

1− x2

(1− x)4
=

∞∑
n=1

n2xn−1

and, multiplying through by x,
x
(
1− x2

)
(1− x)4

=

∞∑
n=1

n2xn .

From part (a), we have
∞∑

n=1

nxn−1 =
1

(1− x)2

and, multiplying through by 2x,
∞∑

n=1

2nxn =
2x

(1− x)2
.

Upon substitution of these results into the decomposition of the given series shown above, we
have

∞∑
n=1

(
n2 + 2n

)
xn =

2x

(1− x)2
+

x
(
1− x2

)
(1− x)4

= x(1− x2)

(
2x

(1− x)4
+

x
(
1− x2

)
(1− x)4

)

=
x(1− x2)(1 + 2x)

(1− x)4
.

4. (a) We know that
∞∑

n=0

xn

n!
= ex .

Hence, with x = 2,
∞∑

n=0

2n

n!
= e2 .

(b) We know that
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1 = sinx .

Hence, with x = 1,
∞∑

n=0

(−1)n

(2n+ 1)!
= sin 1 .

(c) We know that
∞∑

n=0

(−1)n

(2n)!
x2n = cosx .

Hence, with x = 3,
∞∑

n=0

(−1)n32n

(2n)!
= cos 3 ,

but, 32 = 9, so
∞∑

n=0

(−1)n9n

(2n)!
= cos 3 .
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(d) We know that

ex =
∞∑

n=0

xn

n!
= 1 +

∞∑
n=1

xn

n!
,

so,

ex − 1 =
∞∑

n=1

xn

n!
.

Hence, with x = −1,

e−1 − 1 =
∞∑

n=1

(−1)n

n!
,

or
1

e
− 1 =

∞∑
n=1

(−1)n

n!
.

∞∑
n=0

(−1)n

(2n+ 1)!
= sin 1 .

(e) We know

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x+

∞∑
n=1

(−1)n

(2n+ 1)!
x2n+1 ,

thus

sinx− x =

∞∑
n=1

(−1)n

(2n+ 1)!
x2n+1 .

Dividing by x,

sinx− x

x
=

sinx

x
− 1 =

∞∑
n=1

(−1)n

(2n+ 1)!
x2n+1 .

Hence, with x = 1/3,

sin 1
3

1
3

− 1 =

∞∑
n=1

(−1)n

(2n+ 1)!

(
1

3

)2n+1

,

or

3 sin
1

3
− 1 =

∞∑
n=1

(−1)n

(2n+ 1)!

(
1

3

)2n+1

.

as required.

(f)
∞∑

n=1

2n

n3n
=

∞∑
n=1

1

n

(
2

3

)n

.

So we seek the function to which
∞∑

n=1

xn

n

converges and substitute 2/3 for x. Integrating both sides of

1

1− x
=

∞∑
n=0

xn

yields

− ln |1− x| =
∞∑

n=0

xn+1

n+ 1
+ C ,

and, when x = 0, the constant must vanish, hence

ln |1− x| = −
∞∑

n=0

xn+1

n+ 1
= −

∞∑
n=1

xn

n
.
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Now, substitution of 2/3 (which is in the interval of convergence of the power series as it must
be) yields

ln

∣∣∣∣1− 2

3

∣∣∣∣ = −
∞∑

n=1

2n

n3n
,

thus

ln 3 =

∞∑
n=1

2n

n3n
.

(g) Same process as part (f).

(h)

1

1− x
=

∞∑
n=0

xn = 1 +
∞∑

n=1

xn

so
∞∑

n=1

xn =
1

1− x
− 1 =

1− (1− x)

1− x
=

x

1− x
,

and, with x = −1/22,

−1/4

1− (−1/4)
=

∞∑
n=1

(
−1

22

)n

−1/4

−5/4
=

∞∑
n=1

(−1)n

22n

−1

5
=

∞∑
n=1

(−1)n

22n

as required.

(i) We have seen (i.e. you should remember the solutions to problems you’ve solved in order to
become an effective problem solver) that

∞∑
n=1

nxn−1 =
1

(1− x)2
.

Multiplying through by x, obtain
∞∑

n=1

nxn =
x

(1− x)2
.

With x = 1/2, obtain

∞∑
n=1

n

(
1

2

)n

=
1/2

(1− 1/2)2
=

1/2

(1/2)2
=

1/2

1/4
= 2

as required.

(j) Consider the series for arctan evaluated at 1.

(k) Same process as in part (i).

5. (a) ∫ 1

0

sinx

x
dx =

∫ 1

0

1

x

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
dx

=

∫ 1

0

∞∑
n=0

(−1)nx2n

(2n+ 1)!
dx

=
∞∑

n=0

(−1)nx2n+1

(2n+ 1)(2n+ 1)!

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

(2n+ 1)(2n+ 1)!

19



Now, the series is alternating, so we employ the alternating series erorr bound, that |S − SN | ≤
|aN+1|, i.e., that the true error associated with truncating an alternating series at index N is the
magnitude of the next term. As always, set the error bound to be less than or equal to the desired
error because this ensures that the true error will be less than the desired error because the true
error is less than the error bound, and obtain, in this case,

1

(2N + 3)(2N + 3)!
≤ 0.0005

because p decimals of accuracy entails an error of 5× 10−(p+1). Thus,

1

(2N + 3)(2N + 3)!
≤ 5

10000

100 · 100
5

≤ (2N + 3)(2N + 3)!

2000 ≤ (2N + 3)(2N + 3)!

and the smallest natural number N which satisfies this is N = 2. Thus∫ 1

0

sinx

x
dx ≈

2∑
n=0

(−1)n

(2n+ 1)(2n+ 1)!

with at least 3 decimals of accuracy.

(b) ∫ 1/2

0

cosx2 dx =

∫ 1/2

0

∞∑
n=0

(−1)n(x2)2n

(2n)!
dx

=

∫ 1/2

0

∞∑
n=0

(−1)nx4n

(2n)!
dx

=

∞∑
n=0

(−1)nx4n+1

(4n+ 1)(2n)!

∣∣∣∣∣
1/2

0

=

∞∑
n=0

(−1)n

24n+1(4n+ 1)(2n)!

and this series is alternating, so we may employ the alternating series error bound as before.∣∣∣∣ (−1)(N+1)

24(N+1)+1(4(N + 1) + 1)(2(N + 1))!

∣∣∣∣ ≤ 0.0005

1

24N+5(4N + 5)(2N + 2)!
≤ 5

10000

10000

5
≤ 24N+5(4N + 5)(2N + 2)!

2000 ≤ 24N+5(4N + 5)(2N + 2)!

and the smallest natural number N which satisfies this is N = 1. Thus∫ 1/2

0

cosx2 dx ≈
1∑

n=0

(−1)n

24n+1(4n+ 1)(2n)!

with at least three decimals of accuracy.
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(c) ∫ 2/3

0

1

x4 + 1
dx =

∫ 2/3

0

1

1− (−x4)
dx

=

∫ 2/3

0

∞∑
n=0

(−x4)n dx =

∫ 2/3

0

∞∑
n=0

(−1)nx4n dx

=
∞∑

n=0

(−1)nx4n+1

4n+ 1

∣∣∣∣∣
2/3

0

=

∞∑
n=0

(−1)n24n+1

34n+1(4n+ 1)

the substitution of 2/3 into the series is possible because this value falls into the interval of
convergence of the series, otherwise, this series would not be usable to evaluate the definite
integral. Now, the series is alternating, thus, apply the alternating series error bound as before.∣∣∣∣ (−1)N+124(N+1)+1

34(N+1)+1(4(N + 1) + 1)

∣∣∣∣ ≤ 0.0005

24N+5

34N+5(4N + 5)
≤ 5

10000

10000

5
≤ 34N+5(4N + 5)

24N+5

25

35
· 2000 ≤ 81N (4N + 5)

16N

and N = 2 is the smallest integer for which this inequality holds. Thus∫ 2/3

0

1

x4 + 1
dx ≈

2∑
n=0

(−1)n24n+1

34n+1(4n+ 1)
.

6. (a)

tanx =
sinx

cosx
=

x− x3

3! + · · ·
1− x2

2! +
x4

4! + · · ·

thus
tanx

x
=

1− x2

3! + · · ·
1− x2

2! +
x4

4! + · · ·

and

lim
x→0

tanx

x
=

1− x2

3! + · · ·
1− x2

2! +
x4

4! + · · ·
= 1 .

(b)

lim
x→0

1− cosx

x2
= lim

x→0

1−
(
1− x2

2! +
x4

4! + · · ·
)

x2

= lim
x→0

x2

2! −
x4

4! + · · ·
x2

= lim
x→0

1

2!
− x2

4!
+ · · ·

=
1

2
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(c)

lim
x→0

(1− cosx)
2

3x4
= lim

x→0

(
1−

(
1− x2

2 + x4

4! + · · ·
))2

3x4

= lim
x→0

(
x2

2 − x4

4! + · · ·
)2

3x4

= lim
x→0

x4
(

1
2 − x2

4! + · · ·
)2

3x4

=
1

3
lim
x→0

(
1

2
− x2

4!
+ · · ·

)2

=
1

3
·
(
1

2

)2

=
1

12

(d)

lim
x→0

√
1 + x− 1

x
= lim

x→0

∑∞
n=0

(
1/2
n

)
xn − 1

x

= lim
x→0

((
1/2
0

)
+
(
1/2
1

)
x+

(
1/2
2

)
x2 + · · ·

)
− 1

x

= lim
x→0

(
1/2
1

)
x+

(
1/2
2

)
x2 + · · ·

x

= lim
x→0

(
1/2

1

)
+

(
1/2

2

)
x+ · · ·

=
1

2

(e)

lim
x→∞

x sin
1

x
= lim

x→∞
x

(
1

x
−
(
1
x

)3
3!

+

(
1
x

)5
5!

+ · · ·

)

= lim
x→∞

1−
(
1
x

)2
3!

+

(
1
x

)4
5!

+ · · ·

= 1

(f) (Incidentally, the first term is hyperbolic cotangent.) Anyway, proceed as above.

lim
x→0

(
ex + e−x

ex − e−x
− 1

x

)
= lim

x→0

((
1 + x+ x2/2 + x3/3! + · · ·

)
+
(
1− x+ x2/2− x3/3! + · · ·

)
(1 + x+ x2/2 + x3/3! + · · · )− (1− x+ x2/2 + x3/3! + · · · )

− 1

x

)

= lim
x→0

2 + x2 + x4/12 + · · ·
2x+ x3/3 + · · ·

− 1

x

= lim
x→0

x
(
2 + x2 + x4/12 + · · ·

)
−
(
2x+ x3/3 + · · ·

)
x (2x+ x3/3 + · · · )

= lim
x→0

(
2x+ x3 + x5/12 + · · ·

)
−
(
2x+ x3/3 + · · ·

)
x (2x+ x3/3 + · · · )

= lim
x→0

2/3x3 + · · ·
2x2 + x4/3 + · · ·

= 0
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