Prove that $\left|\ln \left(e+\frac{1}{n}\right)-1\right|$ is eventually less than $1 / 100$.
Proof:
We must show that we have a natural number $N$ sufficiently large for which

$$
\left|\ln \left(e+\frac{1}{n}\right)-1\right|<\frac{1}{100}
$$

for all $n \geq N$. We shall consider the general case, that

$$
\left|\ln \left(e+\frac{1}{n}\right)-1\right|<\epsilon
$$

for all $n \geq N$. In other words that $\ln \left(e+\frac{1}{n}\right)$ is eventually arbitrarily close to 1 within an error $\epsilon$. This implies the desired result with $\epsilon=1 / 100$.

Firstly, we should examine the expression $\left|\ln \left(e+\frac{1}{n}\right)-1\right|<\epsilon$. Observe the following:

$$
\begin{aligned}
\left|\ln \left(e+\frac{1}{n}\right)-1\right| & =\left|\ln \left(e+\frac{1}{n}\right)-\ln (e)\right| \\
& =\left|\ln \left(\frac{e+\frac{1}{n}}{e}\right)\right| \\
& =\left|\ln \left(1+\frac{1}{e n}\right)\right|
\end{aligned}
$$

and, because $n \geq 1,1+1 / e n>1$, so $\ln (1+1 / e n)>0$, thus

$$
\left|\ln \left(e+\frac{1}{n}\right)-1\right|=\ln \left(1+\frac{1}{e n}\right) .
$$

Now, if $\ln \left(1+\frac{1}{e n}\right)<\epsilon, 1+1 / e n<e^{\epsilon}$ or $1 / e n<e^{\epsilon}-1$. Additionally, because $\epsilon>0, e^{\epsilon}>1$, so $e^{\epsilon}-1>0$. Thus we have

$$
\frac{1}{e\left(e^{\epsilon}-1\right)}<n .
$$

$\mathbb{R}$ is an Archimedean field. ${ }^{1}$ Consequently a natural number $n$ does in fact satisfy $\frac{1}{e\left(e^{\epsilon}-1\right)}<n$, call it $N$.
Claim: for arbitrary $\epsilon>0$, with $N$ as a defined above, whenever $n \geq N,\left|\ln \left(e+\frac{1}{n}\right)-1\right|<\epsilon$. We demonstrate this.
Fix $\epsilon>0$. Let $N$ be a natural number for which $\frac{1}{e\left(e^{\epsilon}-1\right)}<N$. Let $n$ be an arbitrary natural larger

[^0]or equal to $N$. We have the following:
\[

$$
\begin{aligned}
n \geq N & >\frac{1}{e\left(e^{\epsilon}-1\right)} \\
e^{\epsilon}-1 & >\frac{1}{n e} \\
e^{\epsilon} & >\frac{1}{n e}+1
\end{aligned}
$$
\]

now, because $\ln$ is monotonic,

$$
\begin{aligned}
\ln \left(e^{\epsilon}\right) & >\ln \left(\frac{1}{n e}+1\right)=\left|\ln \left(\frac{1}{n e}+1\right)\right| \\
\text { so } & \\
\epsilon & >\left|\ln \left(\frac{1}{n e}+1\right)\right| \\
\text { but }\left|\ln \left(\frac{1}{n e}+1\right)\right|=\left|\ln \left(\frac{\frac{1}{n}}{e}+\frac{e}{e}\right)\right| & =\left|\ln \left(\frac{\frac{1}{n}+e}{e}\right)\right| \\
& =\left|\ln \left(\frac{1}{n}+e\right)-\ln (e)\right|=\left|\ln \left(\frac{1}{n}+e\right)-1\right|
\end{aligned}
$$

SO

$$
\epsilon>\left|\ln \left(\frac{1}{n}+e\right)-1\right| .
$$

Finally, because $n \geq N$ was arbitrary, $\epsilon>\left|\ln \left(\frac{1}{n}+e\right)-1\right|$ must be true for all $n \geq N$, as desired.


[^0]:    ${ }^{1} x, y \in \mathbb{R}$ with $x, y>0 \longrightarrow \exists n \in \mathbb{N}(n x>y)$. Geometrically, this entails that a line of arbitrary length $(y)$ may be covered by a finite number $(n)$ of line segments of a given length $(x)$.

