Prove that $\left|\ln\left(e+\frac{1}{n}\right)-1\right|$ is eventually less than 1/100.

Proof:

We must show that we have a natural number N sufficiently large for which

$$\left|\ln\left(e+\frac{1}{n}\right)-1\right| < \frac{1}{100}$$

for all $n \geq N$. We shall consider the general case, that

$$\left|\ln\left(e+\frac{1}{n}\right)-1\right|<\epsilon$$

for all $n \ge N$. In other words that $\ln \left(e + \frac{1}{n}\right)$ is eventually arbitrarily close to 1 within an error ϵ . This implies the desired result with $\epsilon = 1/100$.

Firstly, we should examine the expression $\left|\ln\left(e+\frac{1}{n}\right)-1\right| < \epsilon$. Observe the following:

$$\left| \ln\left(e + \frac{1}{n}\right) - 1 \right| = \left| \ln\left(e + \frac{1}{n}\right) - \ln(e) \right|$$
$$= \left| \ln\left(\frac{e + \frac{1}{n}}{e}\right) \right|$$
$$= \left| \ln\left(1 + \frac{1}{en}\right) \right|$$

and, because $n \ge 1$, 1 + 1/en > 1, so $\ln(1 + 1/en) > 0$, thus

$$\left|\ln\left(e+\frac{1}{n}\right)-1\right| = \ln\left(1+\frac{1}{en}\right).$$

Now, if $\ln\left(1+\frac{1}{en}\right) < \epsilon$, $1+1/en < e^{\epsilon}$ or $1/en < e^{\epsilon} - 1$. Additionally, because $\epsilon > 0$, $e^{\epsilon} > 1$, so $e^{\epsilon} - 1 > 0$. Thus we have

$$\frac{1}{e(e^{\epsilon} - 1)} < n.$$

 \mathbb{R} is an Archimedean field.¹ Consequently a natural number *n* does in fact satisfy $\frac{1}{e(e^{\epsilon}-1)} < n$, call it *N*.

Claim: for arbitrary $\epsilon > 0$, with N as a defined above, whenever $n \ge N$, $\left|\ln(e + \frac{1}{n}) - 1\right| < \epsilon$. We demonstrate this.

Fix $\epsilon > 0$. Let N be a natural number for which $\frac{1}{e(e^{\epsilon}-1)} < N$. Let n be an arbitrary natural larger

 $^{{}^{1}}x, y \in \mathbb{R}$ with $x, y > 0 \longrightarrow \exists n \in \mathbb{N}(nx > y)$. Geometrically, this entails that a line of arbitrary length (y) may be covered by a finite number (n) of line segments of a given length (x).

or equal to N. We have the following:

$$n \ge N > \frac{1}{e(e^{\epsilon} - 1)}$$
$$e^{\epsilon} - 1 > \frac{1}{ne}$$
$$e^{\epsilon} > \frac{1}{ne} + 1$$

now, because ln is monotonic,

$$\ln(e^{\epsilon}) > \ln\left(\frac{1}{ne} + 1\right) = \left|\ln\left(\frac{1}{ne} + 1\right)\right|$$

so
$$\epsilon > \left|\ln\left(\frac{1}{ne} + 1\right)\right|$$

$$\ln\left(\frac{1}{ne} + 1\right) = \left|\ln\left(\frac{\frac{1}{n}}{e} + \frac{e}{e}\right)\right| = \left|\ln\left(\frac{\frac{1}{n} + e}{e}\right)\right|$$

$$= \left|\ln\left(\frac{1}{n} + e\right) - \ln(e)\right| = \left|\ln\left(\frac{1}{n} + e\right) - 1\right|$$

so
$$\epsilon > \left|\ln\left(\frac{1}{n} + e\right) - 1\right|.$$

Finally, because $n \ge N$ was arbitrary, $\epsilon > \left| \ln \left(\frac{1}{n} + e \right) - 1 \right|$ must be true for all $n \ge N$, as desired.