Prove that

$$
\lim _{x \rightarrow \frac{1}{3}} 6 x^{2}+x-1=0
$$

Proof:
Our task is to show that, for each $\epsilon>0$, we are able to construct a $\delta>0$ for which, whenever x is in the domain of our function $\left(6 x^{2}+x-1\right), 0<\left|x-\frac{1}{3}\right|<\delta$ necessitates that $\left|6 x^{2}+x-1\right|<\epsilon$.
Firstly, we should examine the expression $\left|6 x^{2}+x-1\right|<\epsilon$. Observe that $6 x^{2}+x-1=(2 x+$ 1) $(3 x-1)=3(2 x+1)\left(x-\frac{1}{3}\right)$, and that $x-\frac{1}{3}$ is one of the factors. If δ were equal to 1 , we would have $0<\left|x-\frac{1}{3}\right|<1$ or $-\frac{2}{3}<x<\frac{4}{3}$ from which we derive that $-\frac{1}{3}<2 x+1<\frac{11}{3}$ or $3|2 x+1|<11$. Now, $3|2 x+1|\left|x-\frac{1}{3}\right|<11\left|x-\frac{1}{3}\right|$ and either $0<\left|x-\frac{1}{3}\right|<1$ or $0<\left|x-\frac{1}{3}\right|<\frac{\epsilon}{11}$ yields the desired inequality. Thus, for any ϵ, we should choose $\delta=\min \left(1, \frac{\epsilon}{11}\right)$.
Let us verify that this indeed works. We consider two cases: $0<\epsilon<11$, and $11 \leq \epsilon$. In the first case, we select $\delta=\frac{\epsilon}{11}$, and $3\left|x-\frac{1}{3}\right||2 x+1|<11 \frac{\epsilon}{11}=\epsilon$ or $\left|6 x^{2}+x-1\right|<\epsilon$, our desired inequality. In the second case, we select $\delta=1$, and $3\left|x-\frac{1}{3}\right||2 x+1|<11(1)<\epsilon$ or $\left|6 x^{2}+x-1\right|<\epsilon$, our desired inequality.
Thus, we have shown what we had intended to show, and the limit must hold.

